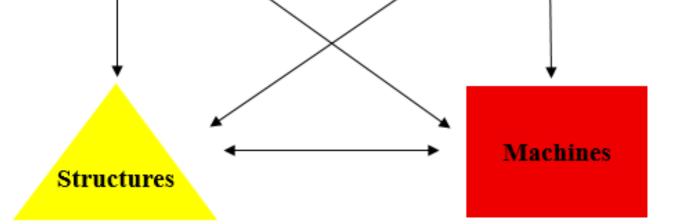
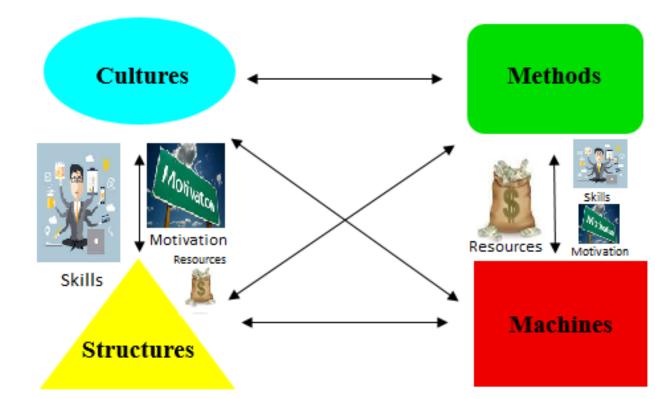

Using a socio-technical systems approach to design and support systems thinking in cyber security education


Erjon Zoto, Stewart J. Kowalski, Edgar A. Lopez-Rojas, Mazaher Kianpour

erjon.zoto@ntnu.no; stewart.kowalski@ntnu.no; edgar.lopez@ntnu.no; mazaher.kianpour@ntnu.no;

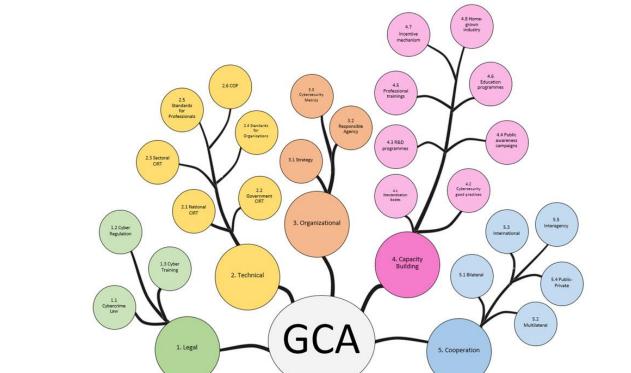
Aim of this paper

- Promoting the usage of the socio-technical systems approach to support the emerging role of systems thinking in cyber security education
- Using simulation-based teaching tools to raise awareness of Master students towards cyber security
- Systems thinking, considering the interplay between social and technical constraints to enable assured operations
- Adversarial thinking, considering the potential actions of the opposing force working against the desired result



The socio-technical systems (STS) approach

Designing the CyberAIMs tool


Defining main attributes

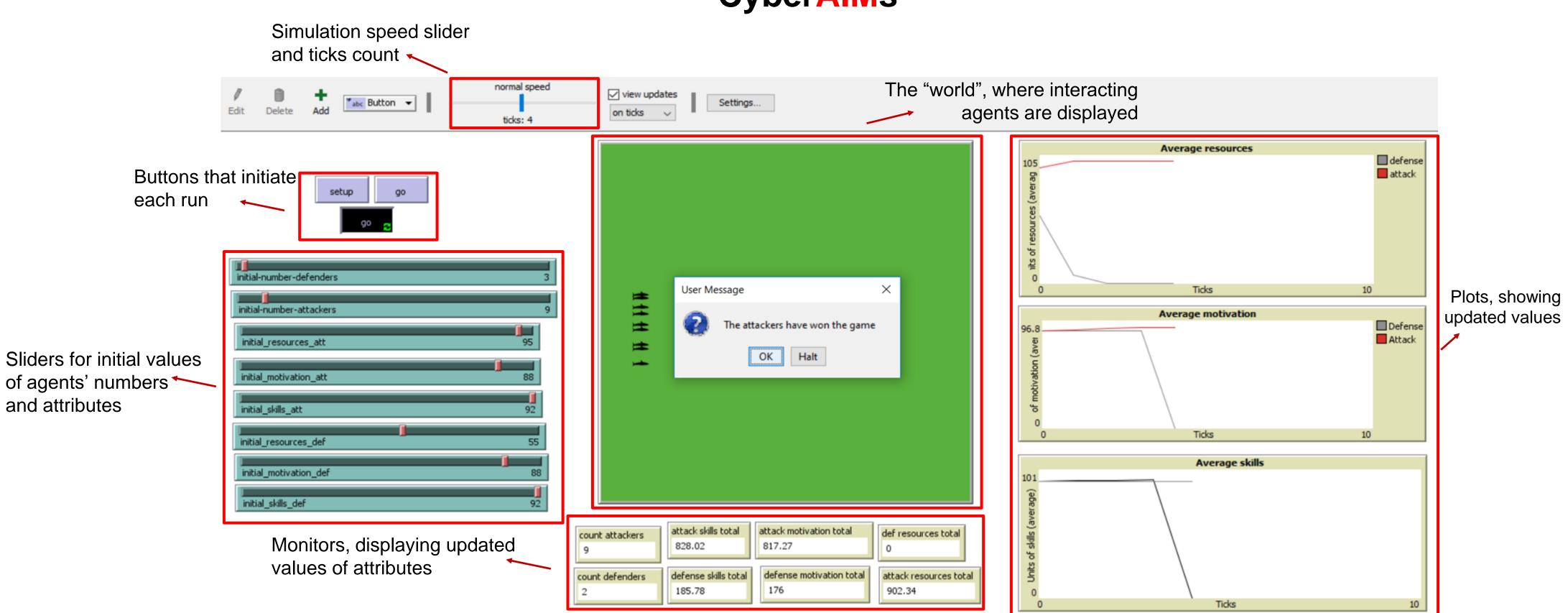
• Extending the STS approach to define main attributes for the tool

Skills

 Mapping values from Global Cybersecurity Index (ITU, 2017)

Resources

Mapping values from different sources



SIPRI Military Expenditure Database © SIPRI 2017

Defining initial values

Parameter	Side	Echelon/Category	Range
Resources	Defense	Ind	1-30
		SMB	1-40
		Согр	41-70
		States	60-100
	Attack	Kid	1-45
		Ideol	15-45
		Contract	45-67
		State	60-100
Skills	Attack / Defense	Low	1-30
		Moderate	31-70
		High	71-93
Motivation	Attack / Defense	Low	1-25
		Moderate Low	26-50
		Moderate High	51-75
		High	76-100

Conclusions & Future work

Current results

Using CyberAIMs with students

 Lab with 15 Master students in a cyber security course, NTNU Gjøvik

Conclusions

In this paper

• We presented how STS approach can be used in

Future Work

Increasing usability and coverage of the tool

A deeper exploration of the *Motivation* attribute
MOMM's taxonomy

 Students have changed perspective on the main attributes affecting defense agents' performance after using the tool

Pre-lab results	Post-lab results*		
Defense Resources	Attack Motivation		
Defense Skills	Defense Motivation		
Defense Motivation	Defense Skills		
*Preliminary results, with 3 matching respondents overall			

agent-based modeling and simulation, introducing the emerging role of systems thinking in cyber security education

- We created CyberAIMs, where we defined two sides of interacting agents, defense and attack, whose performance is related to their attributes values, namely *Resources, Skills*, and *Motivation*
- We used the tool as part of a lab within a course in cyber security, and current results show that students have changed their perspective as related to systems and adversarial thinking after using the tool.
- Protection Motivation theory
- A new version is already being tested
 - Randomized values of attributes
 - Introducing ratios for echelons (RAND, 2014)
- The STS approach will be further used
 - To analyze and interpret results from simulation runs
 - To develop the next versions of the tool
- A "teaching and training tool" for students and other potential targets
 - IS, Computer Science, Military, Health and Finance
 - Critical infrastructure agencies, suppliers and end users
- Increasing level of agents' intelligence
 - Raising knowledge of agents according to their opponents behavior

Acknowledgements

This work was carried out during the tenure of an ERCIM "Alain Bensoussan" Fellowship Programme, in the Information Security and Privacy Management research group, and supported further from the Systems Security and Digital forensics research groups at the Information Security and Communication Technology Department, NTNU in Gjøvik. We would like to express our special gratitude to our colleagues Basel Katt and Christopher Frantz, along with the other colleagues from NTNU in Gjøvik supporting this research and the Master students participating in the lab and answering related surveys.

NTNU Norwegian University of Science and Technology